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1. Introduction

The celebrated AdS/CFT correspondence [1] has led to significant advances in the study

of string theory and strongly coupled gauge theories. The original analysis concerned

maximally supersymmetric super-Yang Mills (SYM) theories but was soon extended to

more general gauge theories.

Our focus here is on brane systems giving rise to SYM theories at large N with N = 2

supersymmetry and no hypermultiplets. For these systems, there are strong hints that

aspects of the strong-coupling behaviour of the SYM theories can be understood from

supergravity, despite the lack of a strong/weak duality in the decoupling limit. This was

first shown for the enhançon system [2].

Going to finite temperature can yield important new information about the nature of

dualities obtained via the decoupling limit from systems of branes. For the N = 4 SU(N)

SYM theory in four dimensions, this was demonstrated in [3] where various aspects of the

finite temperature gauge theory at large N were found to be reproduced by the supergravity

dual.

Studies of finite temperature enhançon systems exist in the literature [4 – 6] and we

proceed to review the physics of these systems in section 1, adding some new remarks. We

review the evidence for a novel kind of finite temperature phase transition in this class of

theories.

In section 2, we present a general family of supergravity solutions for wrapped branes

in type IIA on K3 with charges constrained such that enhançon behaviour can occur. We
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also tidy up the literature, by demonstrating the equivalence between solutions representing

D4 branes wrapped on K3 and fractional D0 branes on the T 4/Z2 orbifold limit of K3.

We motivate why black hole uniqueness theorems likely specify the physics of the general

horizon branch completely. We also broaden the class of shell branch solutions on the

fractional brane side.

In section 3, we perform some explicit translations of hot enhançon physics into frac-

tional brane language to resolve a puzzle in the literature. Section 4 contains some open

problems and speculations about future directions.

2. Observations on previous related work

The enhançon system was the first setup in which a supergravity dual of pure N = 2

SYM theory with no hypermultiplets was studied [2]. It was constructed by wrapping BPS

D-branes on a K3 manifold, and studying the resulting geometry. From the supergravity

point of view, the system exhibited a novel singularity resolution mechanism. Naively, there

appeared to be a naked timelike singularity in the space transverse to the branes, dubbed

the repulson, because a massive particle would feel a repulsive potential which becomes

infinite in magnitude at a finite radius from the naive position of the branes. Probing the

background with a wrapped D-brane, however, showed that the N source D-branes do not,

in fact, sit at the origin. Rather, they expand to form a shell of branes, inside of which the

geometry does not, after all, become singular.

In the original enhançon case, taking the decoupling limit did not result in a clean

duality, in the sense that the supergravity dual of the strongly coupled gauge theory is not

weakly coupled. Nonetheless, a strong hint of the gauge dual of the enhançon mechanism

was seen, in terms of nonperturbative corrections to the moduli space of pure N = 2 gauge

theory. (Corrections due to finite-N were not ascertained in the supergravity picture, which

was studied without loop corrections.)

2.1 Heating up the enhançon system

A natural generalisation was to study enhançon geometries for which the system gains

energy above the BPS bound. An unusual two-branch structure was found [2, 4]. One class

of possible solutions had the appearance of a black hole (or black brane), and was dubbed

the horizon branch, while the other appeared to have an enhançon-like shell surrounding

an inner event horizon and was dubbed the shell branch. Only the shell branch correctly

matches onto the BPS enhançon solution in the limit of zero energy above extremality

but, for sufficiently high extra energy, both solutions were seen to be consistent with the

asymptotic charges. The presence of the horizon branch far from extremality was expected,

since there, the system should look like an uncharged black hole, when the energy is highly

dominant over the charge. Additionally, for the shell branch, fixing the asymptotic charges

did not specify exactly how the extra energy distributed itself between the inner horizon

and the shell.

Dimitriadis and Ross did a preliminary search [7] for a classical instability that would

provide evidence that the two branches are connected. Such an instability, which is funda-
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mentally different in nature from the Gregory-Laflamme instability, could be interpreted

as signalling a phase transition in the dual gauge theory. Such instability was not found.

Also presented was an entropic argument that, at high mass, the horizon branch should

dominate over the shell branch in a canonical ensemble. In later work [8], a numerical

study of perturbations of the non-BPS shell branch was completed, but still no instability

was found. An analytic proof of non-existence of such instabilities could not be found

either, owing to the non-linearity of the coupled equations. Furthermore, [8] investigated

whether the shell branch might violate a standard gravitational energy condition. Indeed,

they found that the shell branch violates the weak energy condition (WEC). This matter

will be important for us in a later section, and so we review it here.

In general, the WEC demands that Tµνvµvν ≥ 0 , where vµ is any timelike vector. For

static geometries such as the heated-up enhançon, this condition reduces to

ρ ≥ 0 , ρ + P ≥ 0 , (2.1)

where ρ is the energy density and P is the pressure. The shell branch solution for the hot

enhançon system has N source branes located, owing to the enhançon mechanism, at an

incision radius ri rather than at r = 0. Because of the shell, the supergravity fields are

not differentiable at the incision radius; the Israel jump conditions produce the required

stress tensor of the shell of branes (and their excitations). Picking the system of D4-branes

wrapped on K3, for definiteness, the energy density of this system at ri has the form

ρ ∼ −Z ′
0

Z0
− Z ′

4

Z4
+

8

ri

(
√

L

K
− 1

)

. (2.2)

In this expression the harmonic functions Z0, Z4 are the usual ones exterior to D4-branes

outside the shell; Z0, Z4 are just constant in the interior. Also, the functions K and L

parameterize the non-extremality exterior and interior to the shell, respectively. L is a

constant if the interior is flat space; by Gauss’ law, the other options are to have a dilaton

black hole inside and/or a hot gas. Now, to avoid unnecessarily complicating the analysis,

we will take the interior to be flat space. It would be possible to paste in a dilaton black

hole instead. The jump conditions tell us that we will put the least stringent constraints

on the shell branch supergravity solutions by taking flat space inside. We do this in what

follows.

Surprisingly, when the system is near extremality and the asymptotic volume of the

K3 is large, the first two terms combine into a dominant, negative, contribution. Thus the

shell branch violates the WEC. It was argued [8] that the shell branch should therefore

be regarded as unphysical. Accordingly, the horizon branch should be considered the

dominant, valid, supergravity solution for non-BPS enhançons, for the range of parameters

admitting it. For the region of parameter space in which no horizon branch exists, other

solutions, more general than those yet considered, might be valid [8].

In subsequent work on non-BPS enhançons, involving two of the current authors, we

used simple supergravity techniques to find the most general solutions with the correct

symmetries and asymptotic charges of the hot enhançon system [5]. We showed that the

only non-BPS solution with a well-behaved event horizon is the horizon branch.
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We also found that there exists a class of solutions that are generalizations of the shell

branch. An example of such a generalization is a two-parameter family, dubbed ‘κ-shell

solutions’, of which the old shell branch is a one-parameter subset. Part of this family

actually obeys the weak energy condition, and is therefore a candidate for the correct

physical solution. Demanding that the WEC be satisfied, however, only fixes κ to obey an

inequality. Since we no longer had a microscopic description of the non-BPS geometry, and

therefore could not rely upon the supergravity solution being built solely out of D-branes,

we could not use a D-probe analysis to distinguish which of these solutions is the correct

generalization of the shell branch.

A further few comments on our general solutions are in order here. The general D = 10

solution for non-BPS D4-branes wrapped on a K3 (of volume V at infinity) are:

dS2
10 = − e2a−6c

e
1
2
(X0+X4)

dt2 + e2c+ 1
2
(X0+X4)(dR2 + R2dΩ2

4) + e
1
2
(X0−X4)ds2

K3 ,

4Φ = 3X0 − X4 ,

F(4) = Q4εS4 ,

F(8) = q4εS4 ∧ εK3 , (2.3)

where

ea =

(

1 − r6
H

R6

)

,

e3c =

(

1 +
r3
H

R3

)2 (

R3 + r3
H

R3 − r3
H

)A1

,

eX0 =

(

R3 − r3
H

R3 + r3
H

)−κ
(

β − q2
4

144r6
H(A1 + κ + 1)2β

(

R3 − r3
H

R3 + r3
H

)2(A1+κ+1)
)

,

eX4 =

(

R3 − r3
H

R3 + r3
H

)−γ
(

α − Q2
4

144r6
H (A1 + γ + 1)2α

(

R3 − r3
H

R3 + r3
H

)2(A1+γ+1)
)

, (2.4)

where r3
H ≥ 0 and asymptotic flatness implies that

α = 1
2

+ 1
2

√

1 +
Q2

4

36r6
H(A1 + γ + 1)2

,

β = 1
2
− 1

2

√

1 +
q2
4

36r6
H(A1 + κ + 1)2

. (2.5)

Q4 is the D4-brane charge and q4 is the induced D0-brane charge and is related to the D4-

brane charge by q4 = −V?Q4/V . Notice that there are four parameters in these solutions:

r3
H , κ, γ,A1. We must determine which ranges of parameters give physically interesting

geometries.

The first condition we demand is that these geometries actually possess an enhançon.

To find enhançons, we can study a wrapped D4-brane probe, which takes the form (in

static gauge)

Sprobe = −
∫

dt m(R)
√

−P(g)e−Φ + µ4

∫

P(C(5)) − µ0

∫

P(C(1)) . (2.6)
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where the (local) mass of the probe is

m(R) = µ4V (R) − µ0 . (2.7)

V (R) = V eX0−X4 is the volume of the K3 at a radius R, and the ratio of the D0- and

D4-brane charges of the probe is µ0/µ4 = V?. The probe action breaks up, as usual,

into potential and kinetic pieces. The potential terms fail to cancel, owing to breaking of

supersymmetry. An enhançon occurs when the probe becomes massless, i.e. satisfies

eX0−X4 |Re
=

V?

V
. (2.8)

As an aside, we can also probe with an ordinary D0-brane and get the expected result: the

D0-brane can pass right through the enhançon radius.

In order to simplify the relevant expressions for understanding the enhançon condition,

let us define the following shorthand,

ζ ≡ (A1 + γ + 1) , η ≡ (A1 + κ + 1) . (2.9)

The volume of the K3 varies with radius, as we come in from infinity. We find that there

are five different cases depending on the values of ζ and η. In particular:

Case I: η > 0 and ζ ≥ 0

Here, the story is particularly simple. We find that, at some radius greater than rH , the

volume of the K3 always shrinks to zero, indicating that somewhere outside this radius, the

K3 has reached its stringy volume. Note that the old (A1 = 0 = κ = γ) shell solution [4]

falls into this category.

Case II: η > 0 and ζ < 0

This is more complicated. Here, the K3 volume is a ratio of functions which both have

zeroes at some finite distance outside rH . If the denominator wins this competition, the

K3 decompactifies at a finite radius rather than developing stringy volume appropriate to

the enhançon. Otherwise, i.e. if the numerator wins, there will be an enhancon shell: the

K3 shrinks down to its stringy volume.

The condition to get an enhançon rather than a decompactification is

(

β

β − 1

)1/2η

>

(

α − 1

α

)1/2|ζ|
. (2.10)

Case III: η ≤ 0 and ζ < 0

The K3 volume always blows up at a finite radius. None of the Case III solutions has an

enhançonand they are all expected to be unphysical.

Case IV: η ≤ 0 and ζ ≥ 0

In this case, the physics depends on the ratio |ζ/η|. When this ratio is (strictly) less than

unity, the volume of the K3 shrinks to zero at rH , passing through the stringy volume just

outside this, where the enhançon lives. Conversely, when this ratio is (strictly) greater

than unity, the K3 decompactifies at rH and so this is not really a shell-branch solution.

There is a third, special, case when η and ζ are both zero. For this geometry, there are
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significant simplifications, and we find the surprising fact that the K3 volume does not run

at all coming in from infinity. Clearly, then, this does not have an enhançon either. Now,

since ζ = 0 and η = 0, there is only one remaining parameter which we can choose to be κ.

In fact, we can show that these solutions are unphysical regardless of the value of κ, but

the reason differs depending on κ. Either the metric is singular and the dilaton blows up,

or the solution violates the BPS bound.

All physical supergravity solutions must obey the BPS bound. In our case, this in-

equality is

M ≥ MBPS =
Ω4

16πG6
(|Q4| − |q4|) , (2.11)

where

M =
3Ω4r

3
H

4πG6

(

(A1 + 1)(α + β − 2

3
) + γα + κβ − 1

2
(κ + γ)

)

. (2.12)

This puts a further constraint on the physically admissible values of the parameters (r3
H ,

A1, γ, κ).

Another condition that physical enhançon solutions should obey is that the WEC be

satisfied at the location of the enhançon shell. This will give us another (different) inequal-

ity that the parameters must satisfy. Note that knowledge of the microscopic description of

our shell could be expected to tie down all four parameters, either partially or completely.

Now, the general WEC at the shell is a messy expression; to clarify the physics, let us

study a simpler subclass of this solution space.

To illustrate, let us consider the subclass where we set A1 = 0 = γ. We will call these

the κ-shell solutions. They are a two-parameter family of solutions obeying two inequalities

(the BPS bound and the WEC at the shell). For fixed charges and mass above extremality,

we can take κ to be the independent parameter. The two inequalities restrict the range of

κ. This range depends on the mass above extremality; in the BPS limit, the allowed range

expands to include κ = 0, which corresponds to the known BPS enhançon solution. In the

non-BPS case, some of the range of κ satisfying the WEC at the shell and the BPS bound

might not be physical either; however, we do not have a microphysical model to settle this

question definitively.

It is straightforward to find an expression for the enhançon radius of the κ-shell solu-

tions:1

R3
e = 2(κ + 1)r3

H +
2

(V − V?)

(

V?

√

Q2
4

36
+ r6

H + V

√

q2
4

36
+ r6

H(κ + 1)2

)

, (2.13)

It is clear that the size of any enhançon shell must be larger, for a given fixed mass, than

the size of the black hole on the horizon branch, because otherwise the second law of

thermodynamics would be violated.

1We could also rewrite this in terms of the parameters: Q4 = −3R3
4, q4 = −3R3

0, r3
H = 1

4
r3
0 , in order to

put the solution exactly in terms of the language of previous studies [4].
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Later, it will be useful to have these solutions in a Schwarzschild-type coordinate

system, rather than an isotropic one, for the transverse space. Defining

R3 = 1
2
(r3 − 2r3

H ± r
3
2

√

r3 − 4r3
H) ,

f(r) ≡ 1 − 4r3
H

r3
. (2.14)

we find that the κ-shell solutions take the more suggestive form

dS2
10 = −f(r)e−

1
2
(X0+X4)dt2 + e

1
2
(X0+X4)

(

dr2

f(r)
+ r2dΩ2

4

)

+ e
1
2
(X0−X4)ds2

K3 ,

eX4 ≡ α − (α − 1)f(r) ,

eX0 ≡ f− 1
2
κ(β − (β − 1)fκ+1) . (2.15)

In order to be confident that these supergravity solutions are valid, we need to know

that the ten-dimensional string-frame geometry has small curvature (in string units) and

small dilaton. For the geometries which have enhançons, supergravity is valid all the way

in to the shell. These conclusions hold unless we were to try to take a decoupling limit: in

that case, the supergravity solution breaks down over a significant domain of the geometry.

This is the reason why there is no clean duality between N = 2 gauge theory with no

hypermultiplets and this enhançon geometry.

2.2 Relationship to fractional branes

In a related context, the geometry of fractional Dp-branes was studied [9]. Fractional

branes can be described as regular D(p + 2)-branes wrapped on a vanishing two-cycle

inside the T 4/Z2 orbifold limit of K3. The dual gauge theory is again N = 2 SYM with no

hypermultiplets. Attempting to take the decoupling limit once again fails to yield a clean

strong/weak duality. This happens in a way directly analogous to the original enhançon

case.

The authors of [9] found supergravity solutions for fractional branes in six dimensions

using two different methods. First, they used boundary state technology to produce a

consistent truncation of Type II supergravity coupled to fractional brane sources; second,

they related their consistent truncation to the heterotic theory via a chain of dualities.

The BPS solutions they found exhibit repulson-like behaviour and an analogous enhançon

phenomenon occurs.

The natural extension of this work was, again, to consider the systems when energy is

added to take them above the BPS bound. In [6], a consistent six-dimensional truncation

ansatz for fractional Dp-branes in orbifold backgrounds was provided, for general p =

0, 1, 2, 3. Solutions corresponding to the geometry of non-BPS fractional branes were found,

in analogy to the non-BPS enhançon work [4]. After imposition of positivity of ADM mass,

half of the solutions were disposed of. One of the remaining solutions was discarded because

it did not have a BPS limit.

Considering the other branch (which we will call the shell branch, by obvious anal-

ogy), those authors concluded that these geometries will always have an enhançon shell
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at arbitrary mass above extremality. Thus they concluded that horizons never form, and

that the gauge dual of this phenomenon is also prevented from occurring. In other words,

the mass density of these solutions was thought to be bounded such that it is never high

enough to form a black hole.

The construction of fractional brane geometries that exhibit the enhançon mechanism

is expected to be dual (through T-duality of type IIA on K3) to the original enhançon

geometries [2, 9, 6]. However, in view of work reviewed in the previous subsection, the

conclusion that horizons never form in the non-BPS fractional brane geometries is puzzling.

To further probe the apparent discord in the behaviour of these two dual systems, let

us consider the energy density of the shell solutions for the fractional brane geometries. To

do this, we match the exterior metric of the shell branch with a black hole interior to the

shell, as before. For definiteness, we pick the fractional D2-brane:

ds2
+ = −H(r)−

3
4 f(r)dt2 + H(r)

1
4

(

1

f(r)
dr2 + r2dΩ2

4

)

,

ds2
− = −H(ri)

− 3
4

f(ri)

F (ri)
F (r)dt2 + H(ri)

1
4

(

1

F (r)
dr2 + r2dΩ2

4

)

. (2.16)

Then, at the shell, which is at incision radius ri, we get an energy density

ρ ∼ −H ′

H
+

8

ri

(
√

F

f
− 1

)

. (2.17)

Near the BPS limit, the energy density of this shell branch does not have a dominant

negative contribution. This is to be contrasted with the previous study of shell branch

solutions in the Type IIA on K3 theory relevant to the enhançon. In fact, ρ can be positive

or negative for the fractional brane case, depending on how the energy above extremality

localizes itself.

We will show that this apparent discord is actually an artifact. The hot fractional

brane system exhibits the exact dual behavior to that of the hot enhançon. In particular,

we will show that the solutions of [6] are related by duality to the hot enhançon solutions

of [4]. By continuously varying the K3 moduli away from the orbifold point, we can reach

solutions in which the shell branch solutions once again violate the WEC. In the following

sections we pin down the precise map between the two setups, and resurrect the horizon

branch on the fractional brane side. We will also exhibit the fractional brane equivalent of

the κ-shell solutions.

In order to do this we first embed the D4 brane enhançon solutions in the full six

dimensional supergravity describing type IIA string thoery compactified on K3. We then

show how to generate a complete T-duality orbit of solutions (ie. with arbitrary charges

for the six dimensional black hole compatible with an enhançon mechanism, representing

any suitable choice of wrapped branes.) We also allow arbitrary values of the K3 moduli

at infinity - in the case of wrapped D4 enhançons this is a slight generalisation in that we

can also include flat B-fields along the internal directions of the K3.

In order to embed the non-extremal D4 brane solutions of [5] in the six dimensional

supergravity, we display a simple two charge truncation which describes the solutions stud-

ied in [5]. These solutions can then be lifted straight across into the larger supergravity

– 8 –
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theory. In deriving the truncation, it is convenient to switch to heterotic variables us-

ing the well-known duality between type IIA on K3 and heterotic strings on T 4. This is

also convenient for comparing with the fractional brane solutions of [6] since that paper

presents solutions in the heterotic frame. However, we should stress that we are performing

T-dualities between different IIA solutions and in principle we could have worked in IIA

variables throughout.

3. Six-dimensional supergravity

3.1 Formalism

The massless fields of heterotic string theory compactified on a four-torus (or type IIA

on K3) are the metric gµν , the B-field Bµν , 24 U(1) gauge fields A
(a)
µ , (a = 1 . . . 24), the

dilaton φ and a matrix of scalar fields M satisfying:

MT = M, MT LM = L. (3.1)

L is a symmetric matrix which defines an inner product on R
4,20. The effective action

describing the dynamics of the supergravity fields in six dimensions2 is given by

S ∼
∫

d6x
√
−Ge−2φ

[

R + 4∂µφ∂νφ − 1

12
HµνρH

µνρ

−F (a)
µν (LML)abF

(b)µν +
1

8
Tr(∂µML∂µML)

]

, (3.2)

where

F (a)
µν = ∂µA(a)

ν − ∂νA
(a)
µ

Hµνρ = (∂µBνρ + 2A(a)
µ LabF

(b)
νρ ) + cyclic permutations of µ, ν, ρ . (3.3)

The equations of motion for A
(a)
µ lead to the conserved electric charges:

v(a) =

∫

S5

e−2φ(LML)ab ∗ F (b) . (3.4)

In the classical supergravity theory, these charges can take arbitrary values, but in the

quantum theory they are constrained to lie on a lattice Γ4,20 ⊂ R
4,20. (In the heterotic string

the 24 quantized charges are carried by fundamental string states. They are 4 momenta

and 4 winding numbers along the T 4 and 16 U(1) charges in the Cartan subalgebra of the

10d gauge group. In IIA strings on K3, the charges label integer homology classes in the

24 dimensional H∗(K3, Z). Branes wrapped on cycles carry these charges.)

The effective action (3.2) is invariant under an O(4,20) symmetry group which acts as

M → ΩMΩT , A(a)
µ → ΩabA

(b)
µ , Gµν → Gµν , Bµν → Bµν , φ → φ . (3.5)

2in conventions standard for the heterotic theory.
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This extends to a symmetry of the full string theory if it also acts on the lattice Γ4,20. With

Γ4,20 fixed, the discrete subgroup of lattice automorphisms O(4, 20; Z) forms the T-duality

group. The action of Ω ∈ O(4, 20) on v(a) is

v(a) → (ΩT )−1
ab v(b) . (3.6)

The scalar matrix M labels the different vacua of the theory3. It will be useful to have

a geometrical interpretation of this matrix. First of all, any M of the form obtained via

dimensional reduction from D = 10 can be written as

M = ΩT
0 Ω0 , (3.7)

for some Ω0 ∈ O(4, 20). The choice of Ω0 is unique up to left multiplication by an element

of O(4) × O(20). Thus choices of M are labeled by points in

O(4, 20)

O(4) × O(20)
. (3.8)

This is the space of positive-definite four-planes in R
4,20.

Let us see this correspondence more directly. Planes are in one-to-one correspondence

with the projection operator onto the plane. Let P+ be the projection operator onto a

positive four-plane. One such projection operator is given by:

P =
1

2
(124 + L) (3.9)

and all others are related by:

P+ = Ω−1
0 PΩ0 , (3.10)

for some Ω0 ∈ O(4, 20). So we find that P+ is related to M as:

P+ =
1

2
(124 + LM). (3.11)

This geometrical language is particularly convenient for expressing the mass of BPS charged

states. The charge of a state is labeled by a vector v(a) in the lattice Γ4,20, as above. The

BPS mass depends on the scalars M , and is simply the length of the projection of v onto

the four-plane defined by M :

m2 ∼ v · P+v = vT LP+v . (3.12)

Note that this mass formula is invariant under O(4, 20) transformations.

We shall be particularly interested in BPS states which are massive at generic points

in moduli space (generic M) but become massless at special enhançon loci. These states

correspond to vectors in the charge lattice Γ4,20 of negative length:

vT Lv < 0 . (3.13)

They become massless when they are orthogonal to the four-plane defined by M

P+v = 0 . (3.14)

3For IIA on K3 it describes the Kähler and complex structure moduli of the K3 as well as flat B-field

components in the internal space. For heterotic compactifications we shall be more explicit about the

relation of M to 10-dimensional quantities in the following.
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3.2 Generating solutions

We would like to generate the widest class of static, spherically symmetric (non-BPS)

enhançon-like solutions of the six dimensional supergravity with action (3.2). In order to

do this, we should find solutions with arbitrary asymptotic values for the scalar moduli

M , and with arbitrary charge vector v(a), subject only to the condition (3.13) which is

necessary so that the state can become massless at special points in moduli space. We

are looking for solutions representing point-like sources, rather than string-like ones in six

dimensions. The restriction of spherical symmetry therefore rules out the six-dimensional

B(2) being turned on. The charge vectors we take to be arbitrary. Where we have to make

an ansatz in the form of our consistent truncation of supergravity is in taking only two

scalar fields to be excited. As with other systems, we expect that horizon branch (black

hole) solutions will be unique.

Our main tool for generating solutions will be the O(4, 20) symmetry (3.5). Indeed,

given a solution with arbitrary (constant) asymptotic value for M , we can transform it

into a solution with M = 1 asymptotically by an O(4, 20) transformation and so we can

restrict attention to such solutions.

Furthermore, having fixed M = 1 asymptotically we still have the freedom to make

transformations in the O(4) × O(20) subgroup of O(4, 20) which fixes the identity matrix.

An O(4) rotation can be used to fix the direction of the component of v in the four-

plane defined by M = 1, whilst an O(20) rotation can be used to fix the direction of the

component of v orthogonal to the four-plane. After fixing these directions, we are left with

a two parameter family of possible boundary conditions given by the magnitudes of these

two components of v.

It will be helpful at this stage to recall the relation between the six-dimensional super-

gravity and the ten-dimensional heterotic theory. We perform the dimensional reduction

using the conventions of Sen [10]. After compactification, the massless six dimensional

fields are as follows. There are scalar fields Ĝij , B̂ij , Â
I
i (i, j = 1 . . . 4) (I = 1 . . . 16), com-

ing from the internal components of the metric, B-field and U(1)16 gauge fields. These are

conveniently assembled into the matrix M :

M =







Ĝ−1 Ĝ−1D̂ − 14 Ĝ−1Â

D̂T Ĝ−1 − 14 D̂T Ĝ−1D̂ D̂T Ĝ−1Â

ÂT Ĝ−1 ÂT Ĝ−1D̂ ÂT Ĝ−1Â + 116






, (3.15)

where Ĝ, B̂ and Â are the matrices with elements Ĝij , B̂ij and ÂI
i respectively and we have

defined D̂ = (B̂ + Ĝ + 1
2ÂÂT ).

There is also a six dimensional dilaton, related to the ten dimensional one by

e−2φ = e−2φ(10)
√

det Ĝ . (3.16)

The six dimensional metric Gµν is defined by the relation:

dS2
10 = Gµνdxµdxν + Ĝij(dzi + 2A(i)

µ dxµ)(dzj + 2A(j)
ν dxν) , (3.17)
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which also introduces four U(1) gauge fields A
(i)
µ . The remaining 20 U(1) gauge fields are

given by:

A(I+8)
µ = −(

1

2
A(10)I

µ − ÂI
i A

(i)
µ ) , A(i+4)

µ =
1

2
B

(10)
iµ − B̂ijA

(j)
µ +

1

2
ÂI

jA
(I+8)
µ . (3.18)

Finally, the six dimensional B-field is given by:

Bµν = B(10)
µν − 4B̂ijA

(i)
µ A(j)

ν − 2(A(i)
µ A(i+4)

µ − A(i)
ν A(i+4)

µ ) . (3.19)

The charge of a fundamental string state is given by momenta and winding numbers

on T 4 and charges under U(1)16. We label these charges by v = (ni, w
i, qI). The lattice

inner product in terms of these charges is

vT Lv = 2niw
i − qIqI . (3.20)

In other words, the inner product is

L =







0 14 0

14 0 0

0 0 −116






(3.21)

in this basis.

Following the discussion above, we should look for a two-charge truncation of the six-

dimensional supergravity. A particular choice of state which has (vT Lv < 0) is given by

a fundamental string with n4 = −w4 = 1, i.e. one unit of momentum and minus one

unit of winding number along the z4 direction of the torus. This motivates making a ten

dimensional ansatz in which only the fields which couple to such a state are turned on.

The truncated supergravity arises if we turn off all of the U(1)16 gauge fields of the

ten dimensional theory and further require that three of the compactified dimensions are

flat space with no fields turned on4. We then make an ordinary S1 reduction on the final

compactified direction. Writing this out explicitly, our reduction ansatz is:

dS2
10 = Gµνdxµdxν + (dz2

1 + dz2
2 + dz2

3) + Ĝ44(dz4 + 2A(4)
µ dxµ)2 ,

A(8)
µ =

1

2
B4µ , Bµν = B(10)

µν − 2(A(4)
µ A(8)

ν − A(4)
ν A(8)

µ ) ,

e−2φ = e−2φ(10)
√

Ĝ44 . (3.22)

The six dimensional field content is thus (Gµν , Bµν , φ), two gauge fields A
(4)
µ , A

(8)
µ and

a scalar field Ĝ44 ≡ eK . Substituting into (3.2) produces the following action for the

truncated theory:

S ∼
∫

d6x
√
−Ge−2φ

[

R + 4∂µφ∂νφ − 1

12
H2

4This corresponds to smearing the string along the three remaining torus directions
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−(eK(F (4))2 + e−K(F (8))2) − 1

4
(∂µK∂µK)

]

. (3.23)

By construction, any solution of this theory is also a solution of the full six dimensional

supergravity described by the action (3.2). Practically, we will truncate further by setting

Bµν = 0. This is because we are looking for particle-like solutions in six dimensions (rather

than, for example, string-like ones).

Next, we describe how to generate O(4, 20) families of solutions from a given solution

of the truncated theory (3.23). First it is useful to introduce a basis for R
4,20 in which the

inner product L is diagonal. Defining Q to be the orthogonal matrix

Q =







1√
2
.14

1√
2
.14 0

− 1√
2
.14

1√
2
.14 0

0 0 116






(3.24)

it is easy to see that the transformation

L → QLQT (3.25)

puts L into the diagonal form L = diag(14,−120). We should also transform the matrix

M via M → QMQT and the U(1) gauge fields via A(a) → QabA
(b). The action (3.2) is

invariant under this set of transformations

We now introduce a useful notation for embedding solutions of the truncated theory

(3.23) into the theory (3.2) written in the new basis. Define a 24-entry column vector by

(v0)T =
(

v0
L, v0

R

)

(3.26)

where

(v0
L)T = (0, 0, 0, 1) and (v0

R)T = (0, 0, 0, 1, 0, 0) (3.27)

are 4- and 20-vectors respectively. A solution of the truncated theory (3.23) gives rise to a

solution of the full six dimensional theory (3.2) with

M = 124 +

(

(cosh K − 1)v0
Lv0T

L (sinhK)v0
Lv0T

R

(sinhK)v0
Rv0T

L (cosh K − 1)v0
Rv0T

R

)

,

F (a) =

(

(FL)v0
L

(FR)v0
R

)(a)

, (3.28)

where

FL =
1√
2
(F (4) + F (8)) , FR =

1√
2
(F (8) − F (4)) . (3.29)

We are interested in solutions for which K → 0 asymptotically so that M → 1. We can

also shift φ by a constant if necessary so that φ = 0 asymptotically. The U(1) charge of

the solution is then computed using (3.4) and we find

v =

(

qLv0
L

qRv0
R

)

, (3.30)
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where we have defined

qL =

∫

S5{r=∞}
∗FL (3.31)

and similarly for qR.

It is straightforward to apply O(4) × O(20) transformations to these solutions to gen-

erate families of solutions with different v. Such transformations have the form

Ω =

(

R4(vL) 0

0 R20(vR)

)

(3.32)

where R4(vL) is a 4× 4 rotation matrix which rotates the vector v0
L into an arbitrary unit

length 4-vector vL and, likewise, R20(vR) is a 20 × 20 rotation which takes the vector v0
R

into an arbitrary unit 20-vector vR.5

After applying the symmetry transformation M → ΩMΩT , F (a) → ΩabF
(b), we gen-

erate the solution

M = 124 +

(

(cosh K − 1)vLvT
L (sinhK)vLvT

R

(sinh K)vRvT
L (cosh K − 1)vRvT

R

)

,

F (a) =

(

(FL)vL

(FR)vR

)(a)

. (3.33)

The charge of this solution is

v =

(

qLvL

qRvR

)

. (3.34)

The masslessness condition which determines the enhançon radius is

0 = P+v =
1

2
[(cosh K + 1)qL + sinhKqR] L





vL
[

cosh K − 1

sinhK

]

vR



 , (3.35)

or, more simply,

(1 + cosh K)qL + sinh KqR = 0 . (3.36)

Finally, we can generate further solutions with arbitrary (constant) asymptotic values

for M , by acting on the solutions (3.33) with the remaining symmetry transformations in

O(4, 20)/(O(4) × O(20)). These transformations act transitively on the space of constant

asymptotic values for M .

4. Revisiting hot fractional brane physics

We now return to the explicit solutions of [5] which were reviewed in section 1. The

formalism of the previous section allows us to rewrite them in a T-duality covariant way.

We then transform to the variables used for the fractional brane solutions and recover and

extend the solutions of [6].

5Different choices of R4(vL) and R20(vR) for fixed vL, vR act identically on the solution (3.28).
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We start from the form of the metric (2.3) discussed in section 1. Reducing to six

dimensions and then applying S-duality([11]) brings us to the following solution written in

the (heterotic) variables of the last section:

dS2
6 = −f(r)e−(X0+X4)dt2 + f(r)−1dr2 + r2dΩ2

4 ,

φ6 = − 1
4
(X0 + X4) ,

FL
rt = − 1√

2r4
(q4e

−2X0 + Q4e
−2X4) ,

FR
rt = − 1√

2r4
(−q4e

−2X0 + Q4e
−2X4) ,

K = X0 − X4 , (4.1)

A few clarifying comments on the solution-generating process are in order. We have pre-

viously indicated that q4 = −V?Q4/V , but from the point of view of supergravity these

two charges are not related. That is to say, the supergravity solution we are considering

solves the equations of motion for any value of Q4 and q4 and we have two independent

charges. We only find out about the relation between the charges by, for example, probing

with a D-brane, a stringy microscopic object. Thus these solutions provide a suitably gen-

eral, two-charge family of ‘seed’ solutions for generating the full orbit of solutions. After

performing O(4, 20) transformations, we can restore the correct quantization condition on

the charges by hand.

Now we want to see how the general non-BPS enhançon solutions look in the language

of the fractional brane constructions. This will also allow us to confirm that the old

solutions of [4] and of [6] are, in fact, related by duality. The appendix contains tedious

details of this calculation. The result of transforming the κ-shell solutions to the fractional

brane frame is

dS2
6 = −fH− 1

2 dt2 + H
1
2 (f−1dr2 + r2dΩ2

4) ,

eφ6 = H
1
4 ,

Gaa =

√
H

h1
,

√
2D =

q2

q1

(

h2

h1
− 1

)

,

Ct = − q2

2r3

1

H

(

h1 + h2 −
q1

2q2a

(

q2

q1
a − 1

)2

eX4(eX0I(r) − 1)

)

,

At = − q1

2r3

1

h1

(

q2

q1
a + 1 −

(

q2

q1
a − 1

)

eX0I(r)

)

, (4.2)

where we have used the shorthand

a = − q1
√

q2
2 + 2q2

1

(4.3)

and defined the functions

h1 ≡ 1

2

((

q2

q1
a + 1

)

eX0 −
(

q2

q1
a − 1

)

eX4

)

,
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h2 ≡ 1

2

q1

q2a

((

q2

q1
a + 1

)

eX0 +

(

q2

q1
a − 1

)

eX4

)

,

H ≡ 1

2a2
h2

1 −
q2
2

2q2
1

h2
2 , (4.4)

and

I(r) = −3r3

∫

dr
e−2X0

r4
. (4.5)

The only property of the latter function that we will need here is that as κ → 0, I(r) →
e−X0 . The fractional brane frame constants a, q1, q2 are related to the parameters familiar

from the enhançon frame by

Q4 = −q1

6

(

q2

q1
+

1

a

)

,

q4 = −q1

6

(

q2

q1
− 1

a

)

. (4.6)

Taking the κ → 0 limit gives the hot fractional brane solutions of [6]. In other words,

the latter are none other than the first class of solutions found in the hot enhançon pa-

pers [4]. Explicitly, for κ = 0,

dS2
6 = −fdt2√

H
+

√
H(f−1dr2 + r2dΩ2

4) ,

eφ = H
1
4 ,

Gaa =
H

1
2

h1
, a = 6, 7, 8, 9 ,

D =
q2√
2q1

(

h2

h1
− 1

)

,

Ct = −q2h3

Hr3
,

At = − q1

h1r3
, (4.7)

where

H = (1 + 1
2

q2
2

q2
1

)h2
1 − 1

2

q2
2

q2
1

h2
2 ,

h1 = 1 −
(r1

r

)3
,

h2 = 1 −
(r2

r

)3
,

h3 = 1
2
(h1 + h2) ,

f(r) = 1 −
(r0

r

)3
,

r3
1 = 1

2
r3
0 + 1

2

ε1
√

q2
2 + 2q2

1

[

2q4
1 + (q2

1 + q2
2)r

6
0 − 2ε2q

2
1Λ

]
1
2 ,
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r3
2 = 1

2
r3
0 + 1

2

ε1
√

q2
2

[

2q4
1 + (q2

1 + q2
2)r

6
0 + 2ε2q

2
1Λ

]
1
2 ,

Λ =
(

q2
1 + (q2

1 + q2
2) + 1

4
r4
0

)
1
2 . (4.8)

The constants parameterizing non-extremality in the enhançon frame, defined by

Hnonextremal − 1 = α(Hextremal − 1) (4.9)

are related to the fractional brane quantities via

α3
4 =

1

q1

(

−r3
1

a
+

q2r
3
2

q1

)

,

α3
0 =

1

q1

(

r3
1

a
+

q2r
3
2

q1

)

. (4.10)

Our dictionary then tells us that the horizon branch solutions in the fractional brane

language are given by the values ε1 = ε2 = −1, while the shell branch solution corresponds

to ε1 = ε2 = +1.

Recovering the BPS solution is straightforward, by using r0 → 0 or equivalently α0 →
1, α4 → 1. This gives [9],

dS2
6 = − dt2

√

Hbps

+
√

Hbps(dr2 + r2dΩ2
4) ,

eφ6 = H
1
4
bps ,

Gaa = H
1
2
bps ,

D = − q1√
2r3

,

Ct = H−1
bps − 1 ,

At = −q1

r3
. (4.11)

Since

Hbps = 1 +
q2

r3
− q2

1

2r6
, (4.12)

the charges of [9] and [2] are consistently related as

−3q2 = q4 + Q4 ,

9q2
1 = −2q4Q4 . (4.13)

Correctly, this shows that one of q4 or Q4 must be negative – as appropriate for our system

for which the second charge is induced from the first.

Again, to be confident that these supergravity solutions are valid, we need to know

that the ten-dimensional string-frame geometry has small curvature (in string units) and

small dilaton. For the geometries which have enhançons, supergravity is valid all the
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way in to the shell. Still there is no clean duality between N = 2 gauge theory with no

hypermultiplets and this fractional brane geometry with an enhançon, because taking the

decoupling limit ruins the validity of the supergravity geometry exterior to the shell.

It is also satisfying to study a wrapped brane probe in these geometries to see where

the enhançon radius occurs. By following the duality map, or directly by looking at a

fractional brane probe, one sees that the relevant quantity to study in the fractional brane

duality frame is the flux through the vanishing 2-cycle,

b =

∫

C
B10d

(2) . (4.14)

This vanishes at the enhançon radius. In fact, this expression leads directly to the condition

eX0−X4|re
=

V?

V
, (4.15)

which is the familiar condition that we found when probing the geometry in the Type II

on K3 frame with a wrapped D4 brane.

5. Discussion

In [5], we and co-authors constructed the most general, static, finite-temperature exten-

sions of the BPS enhançon solutions of six-dimensional supergravity possessing spherical

symmetry and only one running modulus: the volume of the K3 on which the D-branes

are wrapped. In this paper, we generalized the wrapped D4-brane solutions of [5] to have

arbitrary charge vector, i.e. arbitrary combinations of D0, D2, and D4 branes wrapped on

various cycles in the K3. We also allowed arbitrary values for the K3 moduli at asymptotic

infinity. We next showed that a particular subset (previously discovered by [4]) is equiv-

alent to the hot fractional brane solutions found by [6], and thus we widened this class of

solutions. We argued that there is a two-branch structure (horizon and shell solutions) in

both cases.

The context of this wider class of solutions provides a natural explanation as to why

the WEC looks different in the case of hot fractional branes. Namely, that the K3 has

been taken to a very special point in moduli space – the orbifold limit – and the mass of a

BPS fractional brane probe is fixed. There is no longer the freedom to set that mass to be

large at infinity, which led to the dominant contribution to the WEC for the original case

of D4-branes wrapped on the K3.

There remain outstanding questions about the stability of these various branches of

solutions. Some instability must exist, because the horizon branch solutions, which dom-

inate entropically far above extremality, do not exist below a critical value of the mass.

Other solutions, i.e. the shell branch solutions (or other exotics), must take over below that

point, and connect properly to the known BPS solutions in the limit. Thus, there must be

some unstable mode(s) driving the transition between these different states near the crit-

ical mass. It is not clear, however, if such a mode is represented in the bulk supergravity

theory.
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Another impediment to further progress is the lack of a microphysical model of the

D-brane and string sources giving rise to these non-BPS enhançon solutions. Supergravity

alone is apparently insufficient to settle a number of questions. In particular, for the

regime in which the shell branch solutions exist but the horizon branch ones do not, the

issue of how much energy (above extremality) gets distributed on the shell, and how much

localizes inside the shell in the form of a black hole and/or a hot gas, is undetermined

without knowledge of the microphysics.

There are, however, indications that arbitrary distributions of energy above extremal-

ity, between the shell, black hole and hot gas, do not make sense. For example, if the hot

enhançon shell system is very near extremality and the above-BPS energy is all put into

a black hole in the interior of the shell, the black hole must be tiny. This indicates that

its Hawking temperature will be high, which would lead to the wrong equation of state for

this nearly-BPS system. This indicates that some kind of phase transition might occur, in

which a black hole could not form in the interior until it became larger than some critical

size. It would be interesting to know if this physics could be reflected in the physics of the

strongly coupled N = 2 gauge theory.

Also, as we have seen, supergravity allows a number of additional parameters, for shell

branch solutions with given mass and R-R charges, whose microphysical role is unclear.

If we were to allow more scalar fields to be turned on, further unfixed parameters in the

solutions might be possible.

One might be tempted to think that these parameters could be fixed by considering the

shell-branch solutions when their mass gets near to the critical mass at which the horizon

branch first appears. Then an argument for protecting the second law of thermodynamics

(as in [12]) might give us some information on them. However, as shown in [7], the jump in

entropy between the two branches at this point is discontinuous and so more information

beyond supergravity would be required.
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A. Re-expressing heterotic solutions

In this appendix we re-express the family of solutions of six dimensional heterotic super-

gravity, given in equation (4.1), in the variables of the fractional brane solutions. In order

to do this, we make use of the explicit duality map between a class of ten-dimensional

solutions of the heterotic string on T 4 and IIA solutions on T 4/Z2 which is described in

the appendix of [9].

The plan is as follows. First, we choose the vectors vL and vR in a particular way

so that the lift to a ten-dimensional heterotic solution has a suitable form and then we
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apply the duality transformation of [9] to find a type IIA solution. Finally we reduce to

six dimensions to produce the family of solutions quoted in the main text (4.2).

So we start from the solution (4.1) in terms of which the fields of six dimensional

heterotic supergravity are written as:

F =

(

FLvL

FRvR

)

, M = 1 +

(

(cosh K − 1)vLvT
L sinhKvLvT

R

sinh KvRvT
L (cosh K − 1)vRvT

R

)

.

The trick is picking vL and vR correctly. For reasons that will be clear shortly, we choose

vT
L =

(

0 0 0 1
)

,

vT
R =

(

0 0 0 q2

q1
a a a 0 . . . 0

)

, (A.1)

where we have defined

(−3q1)
2 = −2Q4q4 ,

−3q2 = Q4 + q4 ,

a = − q1
√

q2
2 + 2q2

1

. (A.2)

To get into the correct conventions for the lift to ten dimensions we need to apply the

transformation

F → QF

M → QMQT (A.3)

where

Q =
1√
2







1 1 0

−1 1 0

0 0
√

2






. (A.4)

The result is rather a mess:

F → 1√
2

(

03, F
L +

q2

q1
aFR, 03,−FL +

q2

q1
aFR,

√
2aFR,

√
2aFR, 014

)T

, (A.5)

M →





























13 0 0 0 0 0 . . . 0

0 M1 0 M2 M4 M4 . . . 0

0 0 13 0 0 0 . . . 0

0 M2 0 M3 M5 M5 . . . 0

0 M4 0 M5 1 + M6 M6 . . . 0

0 M4 0 M5 M6 1 + M6 . . . 0

. . . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 0 0 0 1





























, (A.6)
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where

M1 =

[

1
2

(

q2

q1
a + 1

)

e
1
2
(X0−X4) − 1

2

(

q2

q1
a − 1

)

e
1
2
(X4−X0)

]2

,

M6 = 1
2
a2 (eX0 − eX4)2

eX0+X4
, (A.7)

and it can be shown that the other functions Mi are related to these via the following

relations:

M2 = −M6 ,

M2
4 = M1M6 ,

M1M5 = −M4(1 + M6) ,

M1M3 = (1 + M6)
2 . (A.8)

Now, the expressions for M and F uniquely determine the following scalars and gauge

fields:

Gbb = 1 ,

G99 = M−1
1 ,

aI
9 = −

√

M6

M1
,

F
(1)9
rt =

1√
2
(FL

rt +
q2

q1
aFR

rt) ,

F
(2)
rt9 =

1√
2
(−FL

rt +
q2

q1
aFR

rt ) ,

F
(3)I
rt = aFR

rt , (A.9)

for b =6,7,8 and I =1 and 2.

In order to complete the lift to ten dimensions, we need to integrate the field strengths

to form gauge potentials. This introduces the function I(r) of equation (4.5). Now, we can

use the duality transformation [9] to convert to a solution of type IIA on T 4/Z2:

φ(HE) = −φ6 ,

g(HE)
µν = e−2φ6gµν ,

G
(HE)
66 =

√

G77G88

G66G99
,

G
(HE)
77 =

√

G66G88

G77G99
,

G
(HE)
88 =

√

G66G77

G88G99
,

G
(HE)
99 =

√

G66G77G88G99 ,

A(HE)9
µ = Cµ ,

A(HE)I
µ + A(HE)I+1

µ =
√

2AI
µ ,
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A
(HE)I
9 + A

(HE)I+1
9 = −

√
2DI , (A.10)

for I = 1..16 in general. Looking carefully, we see that there is a change in conventions

that must be applied for consistency with our notation:

AI
M →

√
2AI

M (A.11)

Applying this, we get the following solution:

dS2
6 = −fe−

1
2
(X0+X4)dt2 + e

1
2
(X0+X4)(f−1dr2 + r2dΩ2

4) ,

4φ6 = X0 + X4

Gaa = M
− 1

2
1 ,

√
2D = a

eX0 − eX4

1
2

(

q2

q1
a + 1

)

eX0 − 1
2

(

q2

q1
a − 1

)

eX4

,

Ct =
−q1

4ar3

(

(

q2

q1
a + 1

)2

e−X4 −
(

q2

q1
a − 1

)2

I(r)

)

,

At =
−q1

r3





q2

q1
a + 1 −

(

q2

q1
a − 1

)

I(r)eX0

(

q2

q1
a + 1

)

eX0 −
(

q2

q1
a − 1

)

eX4



 , (A.12)

where a =6,7,8,9. Note that we have redefined D by a factor of −
√

2, another necessary

change of convention c.f. [9]. We can rewrite this solution in a suggestive way:

dS2
6 = −fH− 1

2 dt2 + H
1
2 (f−1dr2 + r2dΩ2

4) ,

eφ6 = H
1
4 ,

Gaa =

√
H

h1
,

√
2D =

q2

q1

(

h2

h1
− 1

)

,

Ct = − q2

2r3

1

H

(

h1 + h2 −
q1

2q2a

(

q2

q1
a − 1

)2

eX4(eX0I(r) − 1)

)

,

At = − q1

2r3

1

h1

(

q2

q1
a + 1 −

(

q2

q1
a − 1

)

eX0I(r)

)

, (A.13)

where we have defined the functions

h1 ≡ 1

2

((

q2

q1
a + 1

)

eX0 −
(

q2

q1
a − 1

)

eX4

)

,

h2 ≡ 1

2

q1

q2a

((

q2

q1
a + 1

)

eX0 +

(

q2

q1
a − 1

)

eX4

)

,

H ≡ eX0+X4 ,

≡ 1

2a2
h2

1 −
q2
2

2q2
1

h2
2 . (A.14)

Working out the rest of the physics is taken up in the body of the paper.
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